Source: Geophysical Research Letters
Recently, seismologists have recognized that great subduction zone earthquakes, also known as megathrust earthquakes, tend to recur in “supercycles.” These cycles are characterized by the release of strain in a cluster of earthquakes within a few years of each other, followed by a lengthy period of quiescence ranging from several decades to several centuries, during which strain once again accumulates. Megathrust earthquakes have the potential to cause widespread damage and devastating tsunamis, yet the mechanisms that trigger two or more of these events within a few years to a decade are still not well understood, primarily because of a lack of long-term geodetic data. Now Melnick et al. have analyzed a decade’s worth of continuously measured GPS data spanning two great earthquakes, the 2010 Maule (M 8.8) and 2015 Illapel (M 8.3) events. Both earthquakes occurred along the central Chilean margin where the Nazca plate is diving beneath the South American plate at a rate of 66 millimeters per year. The team used these data to estimate changes in surface deformation rates throughout the Andes Mountains and then compared the results with numerical simulations.
Citation:
Cook, T. (2017), Why do great earthquakes follow each other at subduction zones?, Eos, 98, https://doi.org/10.1029/2017EO070481. Published on 31 March 2017.
Text © 2017. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.
