Image of marine snow, which is organic material sinking from upper waters to the deep ocean
The global carbon cycle depends on the biological carbon pump in the ocean. Surface phytoplankton captures carbon, stores it in cell walls, and transfers the element to the ocean deep after the algae die. Now, researchers are looking at how the seasons might affect this process. Credit: NOAA National Ocean Service/Wikimedia Commons, public domain

The ebb and flow of carbon within Earth’s systems are complex and ever-moving occurrences. Carbon is a nomadic element, traveling between the atmosphere, ocean, and the soil, rock, and ice of the planet, changing forms along the way. Much of this cycling takes place in the ocean, partially through a biological carbon pump (BCP). In the BCP, atmospheric carbon is fixed through phytoplankton growing at the surface of the sea. When the phytoplankton dies, carbon particles sink from the surface to deep ocean waters. This carbon can remain for hundreds or even thousands of years before returning to the atmosphere.

The researchers used a global ocean biogeochemical model to see how the amount of carbon particles reaching the deep ocean would change with variations in seasonality. In particular, they looked at how both the pattern and the strength of the seasonality would affect the sinking speed of carbon particles and their attenuation throughout the water column.

—Name, Science Writer

Text © 2022. AGU. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.